output = takanen2013(insig,fs,computationType,printFigs); output = takanen2013(insig,fs,computationType); output = takanen2013(insig,fs);
| insig | binaural input signal for which the binaural activity map should be computed. Optionally, the output of the nonlinear cochlear model by Verhulst et. al. 2012 can be used as well | 
| fs | sampling rate | 
| computationType | defines the type of output provided by the model | 
| printFigs | boolean value that defines whether several figures illustrating the processing steps in the model are plotted or not. As default, no figures are plotted. | 
| printMap | optional boolean value describing whether the resulting activity map is plotted (by default) or not. | 
| output | A structure that contains different fields depending on the input arguments. | 
takanen2013(insig,fs,computationType) computes either the binaural activity map (if \(computationType=1\)) or the MSO and LSO model outputs from the binaural input signal (if \(computationType=2\)).
If \(computationType=1\), the output structure has the following fields:
| .activityMap | Matrix that describes in which of the six frequency ranges there is activation on a given location on the map at a specific time instant | 
| .colorGains | Matrix that describes the signal level dependent gains for the different activation values on the activityMap | 
| .colorMtrx | RGB color codes employed for the different frequency ranges on the binaural activity map | 
| .levels | Vector specifying the left/right location | 
If \(computationType=2\), the output structure has the following fields:
| .leftMso | Output of the MSO model projecting to the left hemisphere | 
| .leftLso | Output of the LSO model projecting to the left hemisphere | 
| .leftWbMso | Output of the wideband MSO model projecting to the left hemisphere | 
| .rightMso | Output of the MSO model projecting to the right hemisphere | 
| .rightLso | Output of the LSO model projecting to the right hemisphere | 
| .rightWbMso | Output of the wideband MSO model projecting to the right hemisphere | 
Takanen, Santala and Pulkki presented a binaural auditory model that uses the outputs of models of the medial superior olive (MSO), lateral superior olive (LSO), following count-comparison principle (von Bekesy, 1930) to project the "what" processing stream output of the model of periphery on a one-dimensional binaural activity map.
The steps involved in the computation of the binaural activity map consist of:
G. von Bekesy. Zur Theorie des Hoerens. Ueber das Richtungshoeren bei einer Zeitdifferenz oder Lautstaerkeungleighheit der beiderseitigen Schalleinwirkungen. Physik. Zeitschr., pages 824--835, 857--868, 1930.
V. Pulkki and T. Hirvonen. Functional count-comparison model for binaural decoding. Acta Acustica united with Acustica, 95(5):883 -- 900, Sept./Oct. 2009.
M. Takanen, O. Santala, and V. Pulkki. Visualization of functional count-comparison-based binaural auditory model output. Hearing research, 309:147--163, 2014. PMID: 24513586. [ DOI ]
M. Takanen, O. Santala, and V. Pulkki. Perceptually encoded signals and their assessment. In J. Blauert, editor, The technology of binaural listening. Springer, 2013.
S. Verhulst, T. Dau, and C. A. Shera. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J. Acoust. Soc. Am., 132(6):3842 -- 3848, 2012.